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SUMMARY

I. An NADH dehydrogenase obtained from an extremely halophilic bacterium

was purified 57o-fold by a combination of gel filtration, chromatography on hydroxy-

apatite, and ion-exchange chromatography on QAE-Sephadex.

2. The purified enzyme appeared to be FAD-linked and had an apparent

molecular weight of 64 ooo.

3. Even though enzyme activity was stimulated by NaCI, considerable activity

(43°,'0 of the maximum activity observed in the presence of 2.5 M NaC1) was observed

in the absence of added NaC1.

4. The enzyme was unstable when incubated in solutions of low ionic strength.

Tlle presence of NADH enhanced the stability of the enzyme.

INTRODUCTION

We previously described the oxidation of NADH by crude extracts prepared

from an extremely halophilic bacterium (designated as strain AR-I) and showed that

high concentrations of NaCI were required for maximum activity of the enzyme 1.

These studies suggested that the salt requirement could not be fully explained in

terms of charge neutralization 2 since, in addition to certain anomalous cation effects,

anions were found to markedly affect the ability of monovalent cations to activate

the enzyme. Furthermore, the requirement for NaCI could be satisfied by mM con-

centrations of Mg 2+ salts or /zM concentrations of polyamines such as spermine 3.

These observations were subsequently confirmed by others 4-6 and it was proposed

that the requirement for high concentrations of NaC1, in the case of a membrane-

bound menadione reductase obtained from Halobacterium cutirubrum, reflected the

ability of certain ions to stabilize hydrophobic interactionsL

Abbreviations: NADH dehydrogenase, reduced NAD: 2,6-dichlorophenolindophenol

oxidoreductase; DCIP, 2,6-dichlorophenolindophenol; TES, N-tris-(hydroxymethyl)-methyl-2-

amino-ethanesulfonic acid; QAE, diethyl-(2-hydroxypropyl)aminoethyl.
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In order to study these various ionic effects in a system uncomplicated by the

presence of a multi-enzyme system, particularly one enriched with respect to the

hydrophobic components associated with bacterial membranes, an attempt was made

to separate and purify the reduced-NAD:2,6-dichlorophenolindophenol oxido-

reductase, EC 1.6.99.3 (NADH dehydrogenase) component from the electron-

transport chain of strain AR-I.

Although enzymes from halophilic bacteria are extremely labile in solutions

of low ionic strength s, certain observations suggested that several techniques used

to purify nonhalophilic enzymes might be applicable to purification of the NADH

dehydrogenase from AR-I. For example, the bulk proteins from several extremely

halophilic bacteria contain large amounts of glutamic and aspartic acids 9 resulting

in relatively acidic proteins. On the assumption that the NADH dehydrogenase from

AR-I was likewise acidic, chromatography on hydroxyapatite seemed potentially

useful since carboxyl groups were reported responsible for protein-hydroxyapatite

interaction 1°. In addition, polyamines, such as spermine, stabilized NADH dehydro-

genase activity in solutions of low ionic strength 3 suggesting that ion-exchange

chromatography, if carried out in the presence of a suitable stabilizing agent, could

be used to purify the enzyme. Subsequently, NADH was found to be a more effective

stabilizing agent than spermine. Finally, the NADH dehydrogenase from AR-I, like

certain other enzymes obtained from extremely halophilic bacteria 11, was reactivated

by the addition of optimal concentrations of NaC1 following inactivation by exposure

to solutions of low ionic strength.

The present paper describes some properties of the enzyme following purification

by agarose-gel filtration, hydroxyapatite chromatography, and ion-exchange chro-

matography on diethyl-(2-hydroxypropyl)aminoethyl-Sephadex (QAE-Sephadex).

The final product, recovered in about 30% yield, catalyzed the oxidation of 376

/_moles of NADH per rain per mg protein.

MATERIALS AND METHODS

Standard assay
NADH dehydrogenase activity was determined as previously described a except

that bovine serum albumin was added to a final concentration of 4° #g/ml to stabilize

the enzyme during the assay. While the rate of dye reduction was proportional to

the amount of added enzyme, these conditions did not measure the total amount of

NADH dehydrogenase activity since the concentration of 2,6-dichlorophenolindo-

phenol (DCIP) employed was only 2.3 times greater than its apparent Kin. Higher

concentrations of dye were inhibitory. A unit of activity is that amount of enzyme

that reduces I /,mole of DCIP per min using standard assay conditions. Specific

activity is defined as units/rag protein. The millimolar absorption for DCIP (20 mM -1-

cm -1) was unaffected by the NaC1 concentration.

Protein determinations

The protein concentration was determined either from the absorbance at

280 nm or by the Waddell procedure as described by Murphy and Kies 1_. The presence

of NADH in the QAE fraction interfered with the Waddell procedure. Therefore,

NADH was removed by passing an appropriate aliquot of the enzyme through a
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0. 7 cm x 20 cm volume of G-5o Sephadex equilibrated with IO mM NaC1. The

volume of effluent corresponding to the volume in which the blue dextran was eluted

was employed for the protein determination. In control experiments using bovine
serum albumin, from 98-1o3% of the added protein was recovered.

Reactivation

The enzyme, inactivated by incubating it in solutions of low ionic strength,

was reactivated by the addition of solid NaC1 to the enzyme to a final concentration

of 3 M NaCh Incubation at room temperature (approx. 22 °C) was the most effective

temperature for reactivation, which was usually complete after 24-36 h.

Concentration of the enzyme

The volume of enzyme was reduced by ultrafiltration in an Amicon UF cell

equipped with a PM-Io membrane. The cell was placed in an ice bath and operated

at a pressure of 75 lb/inch_ with nitrogen.

Chemicals and reagents

Hydroxyapatite (Bio-Gel HT), agarose gel (Bio-Gel A-o.5 m), and polyacryl-

amide gel (Bio-Gel P-Io and P-2oo) were products of Bio-Rad Laboratories. QAE-
Sephadex (A-5o), various Sephadex gels, and Blue Dextran were obtained from

Pharmacia Fine Chemicals. All the gels and the QAE-Sephadex were swollen for 72 h

at room temperature in appropriate buffers. Bio-Gel HT was suspended in I.O M
NaCl-Ioo mM Tris-HCl-Ioo/zM NADH (pH 7.4), allowed to settle several times

(decanting the fines each time), and equilibrated with at least three column volumes
of the above buffer before use.

Bovine serum albumin (Fraction V), DCIP, and NADH were obtained from

the Sigma Chemical Company. Deamino-NADH and the NAD analogs were products
of P.L. Biochemicals, Inc. The oxidized analogs were reduced with horse liver alcohol

dehydrogenase 13 obtained from Boehringer. The products were recovered by passing

the protein-free supernatant (prepared by placing reaction mixtures in a boiling water

bath for 2 min and centrifuging for IO rain at IO ooo × g) through a 1. 5 cm x 25 cm

column of G-Io Sephadex which was equilibrated with IOO mM NaC1. The analogs,

located spectrophotometrically, were well separated from the other components of

the reaction mixture. The peak fractions were combined and concentrated by

lyophilization. The absorbance of the cyanide complex of the oxidized analogs and

the absorbance of the reduced analogs were used to determine their concentrations.

The spectral data and constants required for these determinations were obtained

from P.L. Biochemicals, Inc. 14. Reduction of the analogs was quantitative and the

overall recoveries ranged from 50-94% of theory.

Molecular weight determinations were carried out according to the method of

Andrews is using a 1. 5 cm x 24. 5 cm column of P-2oo polyacrylamide gel previously

equilibrated with 2 M NaCl-Ioo mM Tris-HCl (pH 7.4). The column was calibrated

with lactic dehydrogenase, fumarase, and lysozyme, obtained from Boehringer, and
bovine serum albumin.

All other chemicals were obtained from the usual commercial sources.
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RESULTS

Gel filtration

80 ml of crude extract (prepared as previously described 1) were diluted to a

concentration of 22. 9 mg protein per ml using 2 M NaCl-Ioo mM Tris-HC1 (pH 7-4)

as the diluent and passed through an agarose column equilibrated with 2 M NaC1-

IOO mM Tris-HC1 (pH 7.4). As shown in Fig. I, NADH dehydrogenase activity

appeared at a Ve/Vo of 1.5 and was separated from carotenoid-containing fractions

which presumably were associated with membrane-rich materials. 133o units of

NADH dehydrogenase (spec. act. o.72 ), were applied to the column. Following gel

filtration, combination and concentration of Fractions 49-55 yielded a total of 129o

enzyme units at a specific activity of 6. 4. Recoveries were usually 75% but ranged
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Fig. x. Agarose gel filtration of crude extracts. 80 ml of crude extract (containing 22.9 mg of

protein and I6. 7 enzyme units/ml) were applied to a 2.5 cm x 82 cm column of A-o.5 m agarose

gel previously equilil_rated with 2 M NaCl-too mM Tris-HC1 (pH 7.4). The column was washed

at room temperature (approx. 22 °C) with the same buffer at a flow rate of3o ml]h. 2x-ml fractions

were collected and assayed for NADH dehydrogenase activity (O--O), protein (O--O), and ab-

sorbance at 51o nm (f--z_).

from 65-97°/o . The agarose fraction could be stored at --I2O °C for at least 3 months

with little loss of activity.

When gel filtration was carried out in the presence of 4 M NaCl-Ioo mM Tris-

HCI (pH 7.4), 77% of the NADH dehydrogenase activity present in the crude extract

appeared coincident with those fractions containing the carotenoid pigment. The

remaining NADH dehydrogenase activity appeared in tile included volume of tile
column.

Hydroxyapatite chromatography

22.5 ml of the agarose fraction were placed on a 2. 5 cm × 29. 5 cm column of

Bio-Gel HT previously equilibrated with I M NaCl-Ioo/zM NADH-Ioo mM Tris-

HC1 (pH 7-4).

Following adsorption of the agarose fraction, the gel was washed with 185 ml

of x.o M NaCl-xoo/_M NADH-Ioo mM Tris-HC1 (pH 7.4). This resulted in the

elution of some protein, but no NADH dehydrogenase (Fig. 2). The column was
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Fig. 2. Hydroxyapatite chromatography of the agarose fraction. 22, 5 ml of tile agarose fraction,

containing 8.75 mg of protein per ml and a total of 1265 units, were placed on a 2. 5 cm × 29.5

cm column of Bio-Gel HT equilibrated in t .o M NaCl-lOO t_M NADH-Ioo mM Tris-HCl (pH 7.4).

The column was washed with 185 ml of the above buffer. Subsequently, the column was washed

sequentially as indicated with ammonium phosphate-I.o M NaCl-loo/iM NADH buffers (pH 8.5)

containing the following concentrations of ammonium phosphate: i5o, 25o, and finally 50o raM.

12-ml fractions were collected at a flow rate of 48 ml/h. The column was operated at room tem-

perature (approx. 2z °C). NADH dehydrogenase (©--©); ,4_8 onm (Q--Q).

washed sequentially with three column volumes of ammonium phosphate buffers

(at pH 8.5) at the following concentrations: 15o, 25o, and 5oo raM. Each of the buffers

were I.O M with respect to NaCI and IOoffM with respect to NADH. As shown in

in Fig. 2, a large amount of protein but no enzyme activity was eluted with 15o mM

ammonium phosphate. When the wash was changed to 25o mM ammonium phos-

phate, some protein was eluted followed by the enzyme. Additional protein but no

NADH dehydrogenase activity was eluted with 5oo mM ammonium phosphate.

Fractions 68-79 were combined, concentrated, and designated as the HA fraction.

About 6o% of the units applied to the column were recovered with a 25-fold increase

in spec. act.

QA E-Sephadex fractionation

Five HA fractions were combined, concentrated, and passed through a 1.5 cm ×

31 cm G-25 Sephadex column equilibrated, in 35o mM NaCl-Ioo ffM NADH-Io mM

Na TES (pH 7.0). The NADH dehydrogenase was excluded from the column and was

subsequently placed on a 2. 5 cm × 16 cm QAE-Sephadex column previously equi-

librated with 35o mM NaCl-iooffM NADH-Io mM Na TES (pH 7.0). After the

addition of enzyme, the column was washed with 35 °ml of the starting buffer. There-

after, an NaC1 gradient was established from 35 ° to 5oo mM NaC1 over a total volume

of :4o0 ml. The enzyme was eluted from the column between 42o and 45o mM NaCI

(Fig. 3)- Those fractions of highest specific activity (Fractions 61-79 ) were combined

and immediately reactivated. Following reactivation, the enzyme (QAE fraction)

was concentrated, made 0.8% with respect to bovine serum albumin, and stored
at --12o °C.

Table I summarizes the purification procedure. The QAE fraction oxidized

376/,moles of NADH per rain per mg protein which represented a 545-fold purl-
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Fig. 3. QAE-Sephadex chromatography of fraction HA. 21 ml of fraction HT (containing 26.8
mg protein per ml and a total of 342o units of enzyme) were passed through a 1.5 cmx 31 cm

G-25 Sephadex column equilibrated in 35 ° mM NaCl-xoo ItM NADH-Io mM Na TES (pH 7.o).
The enzyme was then placed on a 2.5 cm x i6 cm column of QAE-Sephadex (A-5 o previously

equilibrated in 350 mM NaCl-ioo/tM NADH-Io mM Na TES (pH 7.o). Fo/lowing absorption of

the enzyme to the column, the column was washed with 35 ° ml of the same buffer until the ab-
sorption at 28o nm reached a low and relatively constant value. Thereupon. a linear NaCI gradient

was established in IO mM Na TES-IootLM NADH (pH 7,o) from 35o to 5oo naM NaCI over a

total volume of 400 ml. 5 ml fractions were collected at a flow rate of 36 ml/h. The column was

operated at 4 °C. NADH dehydrogenase activity (O--O); .4_,0 nrn (O--Q).

fication of the activity present in the crude extract. The QAE fraction was colorless

and could be stored at --12o °C for at least I year without any loss of activity. When

supplemented with bovine serum albumin to a final concentration of o.8%, the en-

zyme could be frozen and thawed repeatedly with little loss of activity. Samples have

been stored 4 °C for I month with less than a lO% loss of the initial activity.

Properties of the enzyme

While NADH dehydrogenase activity was stimulated by the presence of NaC1

(Fig. 4), considerable activity was observed in the absence of added salt. Extrapolation

TABLE I

PURIFICATION OF NADH DEItYDROGENASE ACTIVITY FROM STRAIN AR-1

68 g of cells (wet weight) were suspended in xoo mM Tris-HCl-4.o M NaCI (pH 7.4) and disrupted

by passage through a French press as previously described I. The resulting suspension was centri-
fuged for 30 rain at Io ooo x g and the clear, red supernatant (crude extract) was diluted to a

protein concentration of 22.9 mgfm] prior to passage through an agarose A-o. 5 m gel column.
The purification procedure was carried out with five aliquots of the diluted crude extract up to

the QAE-Sephadex fractionation. At this stage, the 5 HA fractions were combined, concentrated,

and the concentrated material purified by chromatography on a QAE-Sephadex column. A unit

of activity is that amount of enzyme causing the reduction of 1 IdOl of DCI P per minute. Specific

activity in units/rag protein.

Fraction Total Total Recovery Total Specific Purified
volume I_nits (%) protein activity

(ml) (rag)

Crude 400 6300 too 913o 0.69 1.o

Agarose 125 594 ° 94 XliO 5.35 7.8
HA 2i 3420 54 26.8 128 186

QAE I36 188o 3 ° 5.0 376 545
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Fig. 4. Effect of NaCI on NADH dehydrogenase activity. Enzyme activity was determined in

standard reaction mixtures in which only the NaC1 concentration was varied as indicated, o.o 3
unit of QAE fraction were assayed at each concentration of salt. When assayed in the absence of

added NaCI, the concentration of NaCI was 15 raM, due to carry over of NaCI with the enzyme.

Fig. 5- Effect of DCIP on NADH dehydrogenase activity. NADH dehydrogenase activity was
determined in standard reaction mixtures in which only the DCIP concentration was varied as

indicated, o.o 3 unit of QAE fraction were assayed at each concentration and the average of three

determinations at each concentration are plotted.

to zero NaCI concentration gave a rate of NADH oxidation some 43% of the maxi-

mum rate observed at 2. 5 M NaC1. The apparent Km for DCIP, in the presence of
IOO/_M NADH, was 30/_M (Fig. 5)- The enzyme was inhibited by DCIP at concen-

trations greater than 70/_M. The apparent Km for NADH, in the presence of 7°/_M

DCIP, was 23/zM. No inhibition of dye reduction was observed at concentrations of

NADH as high as 4oo/zM (Fig. 6). The maximal velocity when extrapolated to a

saturating concentration of NADH (385/zmoles/min per mg protein) was about 70%

of the extrapolated maximal velocity at a saturating concentration of DCIP.

5
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I I I I I
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Fig. 6. Effect of NADH on NADH dehydrogenase activity. NADH dehydrogenase activity was

determined in standard reaction mixtures in which only the NADH concentration was varied, as

indicated, o.o 3 unit of QAE fraction were assayed at each concentration and the average of three
determinations is plotted.
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No well defined pH optimum was observed when the enzyme was assayed in

the presence of 2.5 M NaCI-5o mM imidazole-HCl buffer. The rate of dye reduction

was constant from pH 6.6 to pH 7.0. At pH values greater than 7, the rate of dye

reduction rapidly decreased. When assayed at pH values more acidic than 6.6 (using

Tris-acetate buffers) the rate of dye reduction apparently increased. However, assays

at these acidic pH values were complicated by the presence of an extremely high rate

of non-enzymic dye reduction and made the acquisition of reliable data difficult.

Specificity of electron acceptors

A limited number of oxidants served as electron acceptors for the enzyme. Of

those tested, only DCIP, menadione (2-methyl-I,4-naphthoquinone), and juglone

(5-hydroxy-I,4-naphthoquinone) were reduced by the enzyme (Table II). The latter

TABLE II

ELECTRON ACCEPTOR SPECIFICITY OF THE NADH DEHYDROGENASE

The QAE fraction was assayed in the presence of variable concentrations of oxidant and sub-
strate. When the oxidant concentration was varied, the NADH concentration was 15o #M. When

the NADH concentration was varied, the following oxidant concentrations were employed:
DCIP, 7o pM; menadione, 4o0 pM; ]uglone, 20o pM. The reported values for v and K,n were

obtained from double-reciprocal plots. V is reported as pmoles of DCIP reduced per min per mg

protein at saturating concentrations of oxidant or NADH.

Electron Oxidant N,4 D H

acceptor
V K., V K.,

(pM) (pM)

DCIP 568 3 ° 385 22
Menadione 353 2r 236 34

Juglone 326 133 221 x 7

two were only 6o% as effective as DCIP when measured at saturating concentrations

of oxidant. The maximal velocity, at a saturating concentration of NADH, was also

affected by the nature of the oxidant with the greatest activity observed in the

presence of DCIP. The apparent Kra for NADH was relatively unaffected by the

nature of the electron acceptor.

The following electron acceptors were not reduced by the enzyme in the

presence of NADH : potassium ferricyanide, lawsone (2-hydroxy-I,4-naphthoquinone)

vitamin K 1 (2-methyl-3-phytyl-I,4-naphthoquinone), vitamin K 5 (4-amino-2-methyl-

I-naphthol), coenzyme Q6, coenzyme Q10, lipoic acid, lipoamide, and horse heart

cytochrome c.

Specificity of electron donor

The substrate specificity of the enzyme was investigated at various concen-

trations of reduced NAD analogs and DCIP. The results of these experiments are

summarized in Table III. Of the analogs tested, only 3-acetylpyridine-NADH, 3-

acetylpyridine-deamino-NADH, and thionicotinamide-NADH were oxidized. The

rates of dye reduction, extrapolated to infinite substrate concentration, varied from

35-47% of the rate observed at saturating concentrations of NADH. NADPH,
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TABLE III

SUBSTRATE SPECIFICITY OF THE NADH DEHYDROGENASE

The QAE-fraction was assayed in the presence of variable concentrations of oxidant and sub-

strate. When the oxidant concentration was varied, the following substrate concentrations were

employed: 3-acetylpyridine deamino-NADH, 8oo#M; thionicotinamide-NADH, 57opM; 3-

acetylpyridine NADH, 63o FM. The DCIP concentration was 7 °/_M when the substrate eoncen-

tration was varied. The reported values for V and Km were obtained from double reciprocal plots.

V is reported as #moles of DCIP reduced per min per mg protein at saturating concentrations of

oxidant or NADH.

Substrate Substrate DCI P

V pM V tiM

NADH 385 23 568 3 °

3-Acetylpyridine deamino-NADH 180 I oo 146 25

Thionicotinamide-N A DH I73 13 241 3 °

3-Acetylpyridine-N A DH 13. 5 Ioo 227 53

deamino-NADH, 3-pyridine aldehyde NADH, and 3-pyridine aldehyde deamino-
NADH did not serve as substrates.

When NADH oxidation was carried out in the presence of the various inactive

analogs, only 3-pyridine aldehyde NADH inhibited substrate oxidation. As shown in

Fig. 7a, the inhibition was competitive with respect to NADH; the K_ was 400 ktM,

about 20 times greater than Km for NADH. The patterns of substrate specificity and

inhibition suggested that the presence of the 6-amino nitrogen in the purine ring was
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Fig. 7. Inhibition of NADH dehydrogenase activity, o.o 3 unit of QAE fraction were assayed in

standard reaction mixtures containing the indicated concentration of NADH and inhibitor. The

results are presented as the average of two determinations. (a) Inhibition by 3-pyridine aldehyde

NADH; (b) inhibition by NAD; (c) inhibition by AMP; (d) effect of NMN on NADH dehydroge-

nase activity. Figures 7 (a-c) are Dixon plots t* whereas Fig. 7 d is a double-reciprocal plot (C), o. I

mM NMN; O, no added NMN).
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Fig. 8. Molecular weight of NADH dehydrogenase by gel filtration. 0. 5 ml Q.\E fraction, contain-

ing 35/ag protein per ml, were placed on a t-5 cmx 24. 5 cm column of t'-2oo polyacrylamide

gel previously equilibrated in 2 M NaC1-]oo mM Tris-HC1 (pH 7.4). The column was operated at

room temperature (approx. 22 °C) and i,o-ml fractions were collected. Fumarase (A), lactate

dehydrogenase (I), bovine serum albumin (_), QAE fraction (O) and lysozyme (A)-

essential for binding. This was consistent with the observations of Rossman et al. 1_

that NAD was hydrogen-bonded to lactic dehydrogenase via the 6-amino and nitrogen

of the adenosine ring. In further confirmation of this hypothesis, NADH oxidation

was observed to be competitively inhibited by AMP (Fig. 7 b) and NAD (Fig. 7c),

the Ki values being 1.5 and 1. 7 raM, respectively, while NMN failed toinhibit the

enzyme (Fig. 7d). At the present time, we are unable to explain the oxidation of

3-acetyl pyridine deamino-NADH.

Molecular weight determination

Two molecular weight determinations were made using P-2oo gel (Fig. 8). Tile
enzyme was eluted after bovine serum albumin monomer. The two values obtained

for tile molecular weight were 6o ooo and 68 ooo. When a crude extract was diluted

in 2 M NaCl-Ioo_M NADH-Io mM Na TES (pH 7.o) and passed through the P-2oo

column, NADH dehydrogenase activity was located at Ve/Vo of 2.o 9 corresponding

TABLE IV

FL:A.VIN CONTENT OF THE QAE-FRACTION

0. 5 ml of the QAE-fraction was analyzed for protein a and (following trichloroacetic acid extrac-

tion and hydrolysis) flavin _4. FAD was calculated as the difference between the total flavin as

determined by acid hydrolysis and the flavin present prior to hydrolysis. The latter was assumed
to represent FMN.

Component Total content

tlg Hmole

Protein 19. i --

FMN 0.029 0.064

FAD 0.296 0.377
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to a molecular weight of 60 ooo. This suggested that following gel filtration subsequent

purification did not produce an enzyme species of lower molecular weight.

Flavin analysis

Flavin analysis of the QAE fraction according to the method of Burch is

(Table IV) indicated that FAD represented 85% of the total flavin. The remaining

flavin was presumably FMN. Although the presence of both flavins made identi-

fication of the flavin associated with the enzyme equivocal, the flavin to protein ratio

was consistent with the assumption that FAD was associated with the enzyme.

Assuming a flavin to protein ratio of I, the minimum molecular weight for the enzyme

was calculated to be 50 700 if FAD were the coenzyme (and 299 ooo if FMN were the

flavin). The former value was consistent with the molecular weight determined from

polyacrylamide gel filtration (Fig. 8).
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Fig. 9. Stability of NADH dehydrogenase as a function of salt concentration. (a) o.I ml of QAE

fraction, containing 675 units of activity per ml. was diluted to the desired salt concentration

with buffer containing ioo mM Tris-HCl (pH 7.4). When necessary, a further dilution was made

using buffer at the desired final NaC1 concentration so that the final protein concentration was

the same in all cases. The diluted enzyme was incubated at 4 °C; samples were removed periodical-

ly, and immediately assayed in standard reaction mixtures. The observed initial rate of DCIP

reduction was taken as the residual enzyme activity. (b) o.2 ml of QAE-fraction, containing x2

units of enzyme activity per ml were passed through a o. 7 cm x ]9 cm P-IO polyacrylamide-gel

column equilibrated with buffer containing the desired salt concentration and where indicated

was ioo pM with respect to NADH. The void volume, as determined with blue dextran, was col-

lected and incubated at 4 °C. It was assayed periodically for residual NADH dehydrogenase ac-

tivity in the standard reaction mixture. Zero time was taken as the time when the added QAE

fraction had entered the gel bed. In control experiments, from 90 to 95% of the total units in a

QAE fraction were recovered following passage through a P-Io column equilibrated in 3 M NaC1-

too mM Tris-HC1 (pH 7.4)-
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activity became exponential. When incubated in 5oo mM NaC1, the enzyme was

stable during the time course of the experiment (15o min).

An entirely different response was observed when the salt concentration was

adjusted by passing the enzyme through a P-Io polyacrylamide-gel column. The

enzyme lost activity in a biphasic manner (Fig. 9b) in which a rapid initial phase was

followed by a slower second one. In addition, there was no evidence of a "lag" prior
to the loss of enzyme activity. When the enzyme was adjusted to a particular salt

concentration by gel filtration using a buffer containing NADH, the loss of activity

was considerably retarded (Fig. 9b). The first order decay constants for the second

phase, in the absence of NADH, were calculated to be 0.035 min -1 and O.Oli min -1

in IOO and 250 mM NaCl, respectively. In the presence of NADH, they were 0.0026
min -1 and o.oo13 min -1.

DISCUSSION

The NADH dehydrogenase obtained from the halophilic bacterium AR-I

exhibited two properties usually associated with enzymes obtained from extremely

halophilic bacteria: instability in solutions of low ionic strength; stimulation of

activity by high concentrations of NaCI. The stability of the NADH dehydrogenase

from AR-I was markedly affected by the presence of its substrate (NADH). Similar

substrate stabilization has been noted with other enzymes obtained from extremely

halophilic bacteria 19-22. When the salt concentration was adjusted by dilution, the

enzyme was more stable than when the salt concentration was adjusted by gel
filtration. Furthermore, dilution also resulted in a lag prior to the loss of activity.

These results are consistent with the hypothesis that dilution did not adequately

reduce the concentration of an enzyme-bound factor (possibly NADH) and that the

lag prior to decay represented the time required for the enzyme-bound component
to dissociate.

NADH dehydrogenase activity was stimulated by NaCI, although considerable

activity was present in the absence of added salt. This type of salt response has been

observed with other enzymes obtained from halophilic bacteria2S, 24 and may suggest

that extraordinarily high concentrations of salt may not be necessary to activate all

of the enzymes obtained from extremely halophilic bacteria. However, this response
was much different from that reported for the NADH dehydrogenase obtained from
Halobaclerium sali_zarium s and the menadione reductase obtained from H. culirub-

rum 25. The enzyme from H. salinarium was completely inactive at salt concentrations

less than I.O M NaCl. At salt concentrations greater than I M, the response to in-

creasing salt concentrations appeared sigmoidal. This kind of sigmoidal response has

been reported to be due to preincubating halophilic enzymes at suboptimal concen-

trations of salt 2°, thus measuring the residual activity following inactivation of the

enzyme. Since no experimental details were described 2, it cannot be determined

whether this explanation could account for the differences in the salt response

exhibited by the enzymes from AR-I and H. salinarium.

The menadione reductase from H. cutirubrum also responded differently than

the NADH dehydrogenase from AR-I. Both enzymes were maximally active at about
the same salt concentration. However, the H. cutirubrum menadione reductase was

inactive in the absence of added salt. Since the activity reported for H. cutirubrum

!
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menadione reductase was obtained from initial rate determinations, this disparity

represented a difference in the activity of the enzymes to salt. In addition, the

menadione reductase from H. cutirubrum was maximally active in 1. 5 M NaCI while

the NADH dehydrogenase from AR-I, using menadione as an acceptor, was maxi-

mally active in 0.5 M NaC1 and considerable activity was observed in the absence of

added salt (Hochstein, L. I. and Dalton, B. P., unpublished). These differences, as

well as differences in molecular weight, pH optima, pH stability, and light sensitivity

(Lanyi, J. K., personal communication) suggest that these NADH dehydrog6nases

(even though membrane-bound and analogous in function) may be constructed along

sufficiently different lines so that the molecular forces responsible for structural

integrity, as well as enzyme activity, may be radically different. A survey of the

NADH dehydrogenases from a wide range of halophilic bacteria, and a comparison

of their kinetic properties may shed light on the significance of this apparent

discrepancy.
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